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1. INTRODUCTION

Climate Alpha is an AI-powered analytics platform that drives data-driven real estate
strategies. Our models capture the impact of a wide range of variables on land value and
property prices under multiple climate change scenarios. We run previously fragmented
datasets through machine learning and mixed-modeling techniques to quantify the impact
of key variables on land and real estate asset prices.

Powering Climate Alpha is a patent-pending machine learning pipeline that forecasts trends
based on customizable scenarios provided by the user in real-time. Climate Alpha’s algorithm
is currently able to predict the land value in backtesting to within 4% of the actual price for
~38% of US counties, and within 6% for nearly 60% of US counties.

New datasets are continuously added to improve the reliability and explainability of our
forecasts. Actual market results are also regularly fed into the models to improve accuracy.

2. PRODUCT DESIGN SUMMARY

Climate Alpha’s architecture can be broken down into offline processes which handle the
baseline forecasts and online processes which generate real-time scenario-based predictions.

Figure 1
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3. PIPELINE COMPONENTS

Overview
The following table summarizes specific ML problems and their solutions in each step of the
architecture shown in Figure 1.

Components Problem
Type

Data Task Packages and
Techniques Used

Data
Processor

Data
engineering

Raw data from
various sources.
Types include
Time-series,
tabular, and GIS
data.

Clean, process and
merge raw data
into a single
dataframe for
Baseline
Forecaster.

- Interpolation
- GIS operations
- Data Engineering

Baseline
Forecaster

Hierarchical
time-series
forecasting

Grouped
time-series data
from 2012 to 2019
for approximately
1000 groups
(counties).

Forecast trends
from processed
time-series data.

- LightGBM
- ARIMA
- Dense Neural Network
(NN)
- Convolutional NN
- Long Short Term
Memory (LSTM) NN
- Autoregressive NN

Scenario
Forecaster Regression

The forecasted
baseline for 1000
counties; each
group’s data
ranging from 2012
to 2040.

Combines
forecasted time
series and other
tabular data to
predict the effect
of custom
scenarios on the
target.

- XGBOOST
- LightGBM
- KNN
- Logistic Regression

Scenario
Parser

Data
engineering

User input in the
form of JSON with
factors for each
feature.

Modified the
baseline data with
user input factors.

- Data Engineering

Scenario
Modulator

Statistical
modeling

User input in the
form of JSON with
factors for each
feature.

Modulate
predicted results
with statistical
models to account
for shifts in
fundamentals.

- Statistics-driven
coefficient computation
for different sectors (e.g.
clean energy adoption
and climate change
development pathways)
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Data Processor

The Data Processor takes raw data from different sources and prepares them for downstream
training. For each dataset, we:

a. Interpolate and pad missing time-series data1

b. Remove remaining NA values
c. Downscale2 CBSA/State data into their constituent counties, appending the

same data across all the constituent counties
d. Merge all time-series feature data into one data frame for the Baseline

Forecaster
e. Merge all non-time series feature data in one data frame for the Scenario

Forecaster

Data is collected at the state, county, or CBSA levels and stored in their respective directories.
Within each directory, there are subfolders containing the raw data, a python script to clean
and merge the raw data, and a final .csv file containing the cleaned dataset.

Initial processing involves data cleaning and renaming specific features for consistency when
all the datasets are merged (for instance, all-time series cleaned files at the county level must
include a ‘County Code’ and ‘Year,’ and should follow the same naming convention). A script is
then used to merge cleaned data files. The script is designed to automatically generate
merged datasets individually for each geographical level if needed, and a combined file
consisting of features from datasets collected at all geographical levels. This script follows the
same guidelines for both time series data and non-time series data.

Baseline Forecaster

The baseline forecaster (BF) projects historical time-series data into the future (every year
from current data to 2040). Multiple data augmentation pipelines and forecasting models are
recorded in the experiments. A detailed description of the experiments conducted for BF is
included in Section 4. The performance of the deployed model is stated below:

a. Within 8% of Root Mean Squared Error (RMSE) for the next year
b. Within 6% of Mean Absolute Error (MAE) across all years
c. Regularized, with no unrealistic exponential increase in the future

2 Smaller administrative boundaries will inherit data from their larger administrative boundaries. For
example, counties will inherit data only available at state level and zip codes will inherit data from
counties.

1 Linear interpolation for missing data between years. Backward and forward filling for missing data at
the ends in a time series.
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Scenario Forecaster
The Scenario Forecaster (SF) aims to learn the relationships of different features contained in
the features set and return scenario-based forecasts from an explainable machine learning
model. The performance of the deployed model is stated below:

a. Within 6% of Root Mean Squared Error (RMSE)
b. Within 4% of Mean Absolute Error (MAE)
c. Sensitive to variations in input conditions.

Scenario Parser
Our models use ~50 features related to real estate markets, socio-economic conditions,
environmental characteristics, and many others to estimate asset values.

The Scenario Parser (SP) enables scenario-based forecasting by modifying the data stream
fed to the SF. For example, if a user increases coastal flood risk, the features that correspond
to coastal flood risk will be adjusted accordingly by the SP and a new input condition will be
used for downstream inference.

To create a scenario, users are allowed to adjust variables within each scenario preset as input
for the scenario parser. Figure 2 shows a custom scenario example created by a user with
different modifiers applied to the baseline scenario. Users can input any combination of
updates to variables to feed into the scenario parser. The input of the user is sent to the
scenario parser and the parser modifies the input data to the forecaster. The scenario
forecaster then updates the price trends based on the modified input data.
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Figure 2

Scenario Modulator
The Scenario Modulator applies a precalculated price coefficient based on statistical models
as an additional influence on the forecasted price generated by the Scenario Forecaster (SF).
While the SF can learn the correlations between features and the target variable,  features
such as those that have not been priced in by the market have little correlation with the
targets. However, the fundamentals that determine property price will change in the future.
For example, climate factors such as environmental risks, temperature, and rainfall currently
do not have a strong bearing on property prices, indicating that these factors have not
adequately been ‘priced’ into property valuations. However, this will change in the future as
more investors begin to price in the impact of climate. Since we do not have future real estate
data that have climate risks factored in, this cannot be tackled with a supervised ML model.

To incorporate the future shifts in fundamentals, a scenario modulator is created using
coefficients calculated through various statistical models, and domain knowledge from
experts in academia and the industry. The coefficients of the scenario modulator are regularly
updated based upon industry research and consultation with experts.
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4. BASELINE FORECASTER DETAILS

The Baseline Forecaster forecasts yearly data until 2040 from historical trends. In total, 99
features from the upstream data processor are forecasted. As our dataset is grouped, artificial
neural networks are able to encode each geographical territory as individual ‘neurons’ and
learn the trends of each territory while keeping the national and regional averages in mind,
resulting in a more geographically correlated forecast into the future. To determine the best
approach to forecasting the future, we experimented with different model architectures and
data pipelines. We found that the best performing pipeline uses a Dense Neural Network
(DNN) with an optional Convolutional layer predicting 12 timesteps into the future. Further
details on experimental results can be found in the sections below.

Current Architecture
Figure 3 is a high-level description of the neural network used for baseline forecasting. It first
comprises an embedding layer that groups the time series of different geographical regions
into sub-series that are specific to one geographical region only. This region might be at the
level of State, County, CBSA, Zip Codes, or other geographical areas of concern.

The embedded data layer is connected to a data augmentation layer that up-samples the
number of data points of the embedded inputs while maintaining the historical trend. This
layer helps to regularize the prediction and improve downstream accuracy.

The upsampling layer is then connected to a 1-Dimensional Convolutional layer with the
appropriate kernel size which is in turn connected to 2 or 3 layers of hidden fully connected
layers after applying a pooling process.

Afterward, a downsampling layer reduces the data points generated by the upsampling
layers into the original structure of the time series. The final output layer returns the
forecasted results of the specified variable in the next year, and the entire neural network is
built in an autoregressive loop where the predictions are fed into the network until the
desired length of forecasted results is reached.
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Figure 3: Baseline Forecaster Architecture Diagram

Experiment Setup
This section presents an overview of notable iterations in past experiments on the baseline
forecaster which led to the final selected model described above.

Baseline The baseline is simply a linear regression model in the previous
year.

ARIMA
Autoregressive integrated moving average (ARIMA) is a classic
statistical model widely used in forecasting. This serves as an
alternative baseline for performance measurement.

Dense
Facebook’s Prophet is a popular classical machine learning
forecasting library used in many projects in practice. This serves as
a performance reference to the off-the-shelf ML models.

CNN A custom ANN with 2 dense layers with 128 nodes using ReLu
activation function.

Random Forest (RF)
Two 1-dimensional convolution layers are added before the dense
layers with variable kernel sizes in different iterations that involve 3
or 7 years of historic data for the model to learn historical patterns.

LSTM
Two bi-directional LSTM layers are added before the dense layers so
that past year data can be ‘memorized’ and impact predictions as
well.

9



Metrics
The performance of the models are measured through back-testing of past year data with
k-fold validation. The total dataset of 1000 counties is split into 5-folds, with each fold having
different geographical compositions.

We use Mean Absolute Error (MAE), Root Mean Squared Error(RMSE), and Mean Absolute
Percentage Error(MAPE) to measure the performance of the models. The errors are
calculated by rescaling the results back in dollar terms against the ground truth.

Index-to-price translation
One of the most challenging aspects of real estate prediction is the lack of historical data.
Most of the data available from the 1970s to 2010s are in price indices, rather than transacted
amounts. Datasets with transaction prices in dollar terms are mostly only available after the
2010s. This means that backtesting is only limited to data from recent years, and is unable to
accurately predict property values across longer real estate cycles

To overcome this limitation, we have developed an index-to-price translation model that
converts any real estate price index (e.g. FHFA Home Price Index, Commercial RE price index)
into absolute dollar terms, within a 2.4% mean absolute percentage error across all counties
and years.3 This method expands the temporal coverage of the transacted price dataset and
enables more accurate long-term predictions.

Results
The results of each model are recorded below. All the performances are derived from the
same backtesting and pre- and post-processing techniques. Using backtesting on every past
year, the Mean Absolute Percentage Error is ~ 6% and Root Mean Squared Percentage Error is
~ 8%.

3 Please refer to Appendix experiments conducted to obtain the best approach.
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Model Key Layers and
Hyperparameters

Train
MAE($)

Train
RMSE($)

Test
MAE ($)

Test
RMSE($)

Test
MAPE

Test
MSPE

Baseline
layers=(Dense(1),Den
se(9)),
activation=’relu’

3080 6255 11994 26568 3.6 9.2

ARIMA

difference=2, p,q
selected from grid
search, using least
AIC score.

4873 9166 11863 18725 4.1 6.6

Prophet
Epochs = 956,
batch_size = 16,
learning_rate=0.04

3854 6631 16725 29926 5.2 9.8

Dense
layers=(Dense(512),D
ense(9)),
activation=’relu’

3093 6449 11883 25501 3.6 9.1

CNN3
layers=(Conv1D,
Dense),
Kernel_size=3

3019 6551 11869 25985 3.6 9.1

CNN7
ayers=(Conv1D,
Dense),
Kernel_size=7

2662 5188 10354 20602 3.4 6.9

LSTM
layers=(LSTM,
Dense),
lstm_units=32

2913 5788 8903 14638 3.1 5.1

Key Discoveries
The model performs better against other baseline algorithms such as linear regression and
ARIMA based on MAE and RMSE. By upsampling yearly data to monthly data, we have
‘regularized’ the future prediction trend and avoided unrealistic exponential growth forecasts.
In datasets with high irregularities, applying moving averages greatly stabilizes the resultant
trend and regulates the forecast.

This baseline data provides a good projection of the current trend into the future and can be
used as the baseline for training the downstream scenario forecaster.
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Limitations
While the chosen method has a low margin of error, the baseline prediction is only a forecast
on the expected average trendline in the next two decades. It does not take into account
fundamental shifts in market sentiments, macro-economic policies, or other exogenous
variables such as climate change.

Future Improvements
1. Rural-Urban Divide. Some datasets (e.g. multi-family homes and commercial

property prices) only cover urban areas (i.e. CBSAs). More data relevant to counties
outside of the urbanized areas are being collected to examine the different drivers of
rural and urban asset prices.  In the future, urban areas and rural areas can be trained
individually, increasing our coverage to all counties.

2. Rate of change forecasting. The current forecasting is based on absolute values. It is
possible that forecasting index values will return even better results as the index
values indicate the rate of change and have less skewness than the absolute dataset
(less tail heavy), leading to better training performance.

3. Ablation Study. The best-performing model described above uses multiple data
pre-processing steps to achieve the results. We will offer an ablation study to
showcase the effectiveness of our data processing pipeline in reducing backtesting
errors.
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5. SCENARIO FORECASTER DETAILS

After obtaining a baseline forecast into the future from the baseline forecaster, the data is
then used to train a scenario forecaster that responds to the additional conditions set by the
user on the front end as seen in Figure 2.

Many different machine learning models were experimented to find the best model that
offers accurate prediction and explainability. Figure 4 presents the current ML pipeline of the
Scenario Forecaster.

Current Architecture

Figure 4: Scenario Forecaster Pipeline

The user interface enables the user to increase or decrease the likelihood of certain
predefined scenarios, or to adjust the values of individual independent variables to be used
for the generation of the scenario-based prediction as seen in Figure 2 in the previous
section.

The scenario parser receives inputs from both the user interface and Baseline Data.  Some or
all of the forecasted baseline data may be displayed to the user via the user interface as a
baseline scenario. The baseline scenario is a projection of the future values of the plurality of
variables and can be adjusted by the scenario parser in accordance with the input from the
user interface. Accordingly, the scenario parser outputs modified values of the plurality of
variables.

The scenario parser processes the user input, reads the user input, and encodes the input
into different weights to adjust the input dataset for prediction. It receives the baseline data
and separates it by the features learned by the machine learning model from features outside
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of the model.  Features that are learned by the machine learning model have different
degrees of correlation or feature importance. Adjusting the value of the variables thus affects
the machine learning results. Features that are not learned by the model are modeled with
statistical models that are calculated based on research and heuristics.

The machine learning model comprises an ensemble machine learning model that is
configured to estimate future values of the selected dependent variable based on forecast
data for the independent variables. For example, the machine learning model may be
obtained by training using the historical values of the independent variables and the forecast
values of the dependent variables from the forecast data, and the historical values of the
dependent variable and the forecast values of the dependent variable from the forecast data.
In some embodiments, the machine learning model is obtained by retrieving stored
parameters of the model from a database of previously trained models.

Experiment Setup
The goal of the scenario forecaster is to provide accurate predictions based on customized
shifts in the input dataset, simulating a change in environment. The best model would be
one that has a low error margin while maintaining the high explainability and sensitivity to
high dimensional problems. The ML models that were chosen for experimentation are listed
below. Compared to the Baseline Forcaster, the models do not use deep neural networks
(DNN) as they generally have poor model explainability.

Linear A linear regression model serves as a baseline and is easily
explainable.

SVM Support Vector Machines (SVM) are effective in
high-dimensional spaces.

KNN k-nearest neighbors (KNN) could cluster locations with similar
traits.

Decision Trees (DT) Simple tree-like regression model, a baseline for DT-based
models.

Random Forest (RF)
An ensemble DT model with bagging. Easily tunable and
generally returns more accurate predictions in higher
dimensions problems than linear models.

XGBoost
An ensemble DT model with gradient boosting. Requires less
hyperparameter tuning than RF and is more accurate with an
unbalanced dataset.
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LightGBM
In XGBoost, trees grow depth-wise while in LightGBM, trees
grow leaf-wise which is potentially faster in training and
deployment while maintaining similar performance.

Gradient Boosting(GB)
An ensemble DT model with Histogram-based Gradient
Boosting. This estimator has native support for missing
values (NaNs)

Spatial Encoding
As real estate is greatly affected by location, different experiments were conducted to find the
best geographic encoding techniques. Currently, each county is encoded by a one-hot State
code and ordinal encoded County code. This is to make sure counties in different states are
separated into different feature spaces whereas counties in the same state can be clustered
together in an ordinal series to capture their spatial similarity.

Metrics
Similar to the Baseline Forecaster, the performance of the models is measured through
back-testing of past year data with k-fold validation. The total dataset of 1000 counties is split
into 5-folds, with each fold having different geographical compositions.

We use Mean Absolute Error (MAE), Root Mean Squared Error(RMSE), and Mean Absolute
Percentage Error(MAPE) to measure the performance of the models. The errors are
calculated by rescaling the results back in dollar terms against the ground truth.

Results
The results of each model using 5-fold cross-validation are recorded below. All the
performances are derived from the same backtesting and pre-and post-processing
techniques with 72 features. From the results, we see that tree-based models such as
Random Forest or Gradient Boosting offer superior performance compared to other
regressors. Amongst the tree models, Random Forest (RF) performs the best in terms of test
metrics with a MAPE of 7.1% and MSPE of 8.1. Gradient Boosting (GB) and LightGBM (LGBM)
also offer good results with much lower inference speed, which is a crucial element in
real-time usage.
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Model Train
MAE
($)

Train
RMSE
($)

Test MAE
($)

Test
RMSE
($)

Test
MAPE
(%)

Test
MSPE
(%)

Inference
Speed
(ms)

Linear 53553.78 101995.55 55054.88 128219.45 23.6 36.1 4.8

SVM 210498.57 294286.8
0 206719.52 304510.39 64.6 85.8 4.6

KNN 27157.84 50776.29 25697.31 53743.86 11.0 15.1 6005

Bayesian
Ridge 53432.82 101970.81 54984.22 128299.53 23.5 36.1 8

Decision
Trees 31308.27 52973.49 29540.65 52918.23 11.2 14.9 5.6

Random
Forest 18915.02 34533.74 17707.94 28742.48 7.1 8.1 114.8

XGBoost 54191.59 80368.51 54887.19 79700.87 23.2 22.5 28.3

Gradient
Boosting 19456.63 38381.76 19607.51 44471.26 7.9 12.5 33.8

Light
GBM 19161.71 38774.48 18828.34 50219.63 7.7 14.1 23.4

RF + GB 20245.48 36587.65 19787.691 33981.39 7.8 9.5 283.2

Feature Optimization
Next, experiments are conducted with RF, GB and LGBM. The results of these models can be
optimized further through feature optimization and hyperparameter tuning. While Climate
Alpha has a rich pool of datasets, further feature engineering is conducted on the initial
feature space to trim away unimportant or noisy features that could hinder the performance
of the model or muddle the explainability of the models.
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Explained Variance ratio and cumulative explained variance

Using principal component analysis, we found that approximately 50 features out of the
entire set of 99 features contribute to 95% of the explained variance. This means that many
features offer similar correlations and can be removed without impacting actual model
performance. Through exploratory data analysis (EDA), 27 features were dropped from the
initial set of 99 features. Furthermore, 7 climate variables were found to have little correlation
with the target variables. Since the impact of climate variables is expected to change in the
future, their historical impact does not contribute to the performance of the model. This
reduced the feature count to 65. Lastly, combining analysis results from explained variance
ratio from PCA and feature importance values from the selected models, 15 features were
dropped again, leaving the final feature size at 50. The following table shows the performance
of 5-fold CV results of the selected models trained on decreasing feature sizes. Notice that
performance did not vary drastically, therefore confirming that the optimized feature set can
effectively explain the correlation with the target variable just as well as the initial dataset. All
metrics are calculated on the test set.

Dataset
(Features)

Model Key
features

MAE ($) RMSE
($)

MSPE
(%)

MAPE
(%)

Inference
Time (ms)

Initial
Features (99)

RF 45 18925 34220 9.6 7.5 80.7

GB 40 19878 32561 9.1 7.9 34.1

LGBM 52 19617 32951 9.2 7.8 20.2

Reduction
after EDA
(72)

RF 35 19030 39333 11.0 7.6 77.3

GB 50 20732 35898 10.0 8.1 30.0

LGBM 52 20639 32690 9.13 8.3 19.2
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Reduction of
Climate
Variables (65)

RF 31 19585 43221 12.1 7.7 53.1

GB 45 21791 37473 10.5 8.8 31.4

LGBM 49 21091 34600 9.6 8.4 19.2

Final
Features
(50)

RF 30 19525 38931 10.9 7.7 80.0

GB 40 22444 36366 10.2 8.9 30.0

LGBM 45 22010 34632 9.6 8.9 19.0

Hyperparameter Tuning
Using the final feature set, the hyperparameters of the three candidate models are tuned. The
LGBM model with the lowest error and relatively small model size is chosen for deployment.
Their final performance is shown in the table below:4

Model Test MAE
($)

Test
RMSE($)

Test
MAPE(%)

Test
MSPE(%)

Inference
Speed (ms)

Model Size
(mb)

LGBM 9447.48 16700.15 3.66 4.66 80 6.2

GB 12405 21903 4.82 6.12 50 3.2

RF 19525 38931 7.7 10.9 80 349.4

Limitations

1. Shifting Baselines. While we have achieved good results after iterating through different
experiments, is it important to note that there is no perfect foresight. Backtesting, however
rigorous, does not account for black swan events or sudden shifts in government policies.
As such, the model will be continually re-trained as soon as new records of its features are
updated.

2. Relative rather than absolute. It is also important to note that the results given by the SF
are indicative rather than absolute. The deviation from the baseline trend helps investors to
be on the correct side of the macro trend, rather than pinpointing the price of assets.

4 Please see the appendix for the chosen hyperparameters.
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Future Improvements

1. Encoding by climate classifications. To increase geographic sensitivity further, we will
encode each county with their respective Köppen Climate Categories to account for
climate differences between different geological features even amongst counties that are
close to each other. For example, some counties could be separated by an important
geological feature that creates a different microclimate in the two counties. Encoding
Köppen Climate classifications would prove the model of this layer of information.

2. Offering other models. While the current model has the lowest error, other models can
also be offered for users to explore different types of correlations to make more informed
decisions. For example, a linear model might perform less well in backtesting but offers a
more comprehensible correlation coefficient than the feature importance used in tree
models.
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6. FEATURE WEIGHT EXPLORER

Aimed at enhancing the explainability of our results, the Feature Weight Explorer was created
to explain the effect of the chosen scenario on land value, to be used in tandem with the
scenario forecaster. The feature explorer converts the feature importance learned by the
model into percentage points, giving users a more intuitive understanding of the impact of
each variable. Figure 5 shows the impact on property price for each  1% increase in feature
value in California. The figure also shows the projected impact in the future that is not yet
priced in. This future projection is deduced from our statistical models which will be
explained in the following chapter.

Figure 5: Feature Weight Explorer

This graph shows the impact of key variables on land price in California, with the current
impact of a 1% change in a variable on land value per acre shown on the x-axis, and its likely
future impact was shown on the y-axis. Notable likely corrections include emissions intensity
(defined as kilograms of CO2 generated per MW) which is currently positively correlated with
land value. We expect that as climate risks become more pronounced, land prices in
geographies that rely on fossil fuels will see an increasingly strong negative correlation with
emissions intensity. For California, by 2040, we expect a 1% increase in emissions intensity to
lower land prices by ~3%.
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7. RESILIENCE INDEX TM

CA Resilience Index Dashboard for Alameda County, California

Background

While the machine learning models in the previous sections offer insight into the features
that drove the property market historically, the future market will likely be based on an even
more complex set of fundamentals than today. The most perceivable shift in fundamentals is
the rising importance of climate and sustainability-related factors such as climate
change-induced hazards (physical risks) or ESG related costs (transitional risks). Although
these features have had a low historical correlation with property values, rising flood, fire,
coastal risk and other insurance premiums indicate that property markets are beginning to
price in these factors.

The Climate Alpha Resilience Index ™ was crafted to provide:

(i) An intuitive index for qualitative analysis of climate change-induced impact across
geographies, and

(i) A statistical model to account for future shifts in market fundamentals cause by climate
change, by assigning weighted coefficients to the machine learning output based on
different climate change scenarios.
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Overall Scoring Methodology
The main index is aggregated from three sub-indexes, modeling Climate Risks, Climate
Vulnerability, and Climate Readiness separately for ease of qualitative understanding. The
index considers future climate projections, exposure to extreme events (e.g. population
density and percentage area exposed to flooding), the sensitivity of the county population
towards climate risks (e.g. percentage of the elderly population), and the capacity to cope
with risk events (e.g. hospital beds per 1000 population).

The coefficients of the climate risk models are computed based on the output of our in-house
climate risk models (Climate Alpha Risk Models) which are composite scores built upon
extensive historical and statistical analyses of various GIS and climate data. In addition to risk
models, we also compute a readiness coefficient for each county to gain insight into how
prepared the counties are against the projected risks. This holistic scoring approach factors
both climate risks and readiness in one analytic platform.

The Resilience Index is calculated from all continental U.S. zip codes and counties using a
min-max approach, standardizing the performance of each location under each indicator on
a scale of 0 to 100. Five categorical scores (i.e. Very low, low, medium, high, very high) are also
assigned to each indicator based on a quintile split. The overall score of each category (Risk,
Vulnerability, Readiness) is an average calculated from the respective indicator sub-scores.
Each indicator score is weighted evenly in the aggregation. As some indicators are made up
of more than one data source, in which case the multiple data sources are also evenly
weighted to avoid aggregation biases.
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Risk Index Methodology
The risk index considers future climate projections, exposure to extreme events (e.g.
population density and percentage area exposed to flooding). Overall, climate risk in our
model can be expressed as such:

Climate Risk =
Hazard Exposure x Hazard Likelihood x Deviation from Historical Thresholds

Each climate change-related risk is aggregated from a list of climate projections  under
different carbon emission scenarios. These projected features are then engineered into scores
for different climate change-related risk categories. There are currently five risk  categories
and each of the categories are listed below with their constituent datasets.

Heat Risk Storm Risk Drought
Risk

Fire Risk Flood Risk

Likelihood of
heat event5

Likelihood of
storm event6

Likelihood of
drought event7

Historical fire
events

FEMA Flood
Score

Mean annual
temperature

Storm intensity
Freshwater
availability

Vegetation
cover

percentage

Surface runoff
volume

Diurnal
temperature

range
Wind Freshwater

demand

Wind speed
and humidity

7 Number of continuous dry days below the 5th percentile.

6 Number of continuous 2-day storms with daily precipitation above the 95th percentile.

5 Days with maximum temperature above 95th percentile based on history from 1960 to 2020.
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Each location also has different risk thresholds calculated
from historical data. For example, a day with a temperature
above 86.9℉ is considered extremely hot for Miami, FL, while
the threshold is reduced to 76.1℉ for Seattle, WA.

Taking the Resilience Index ™ flipcard to the right as an
example, any day with a maximum temperature above 86.9℉
will cross the 95th percentile threshold based on historical
climate data from 1960 to 2020. In 2040, the number of
extremely hot days will increase from today’s 35 to 95, which
significantly increases the likelihood of heatwaves in the
region.

An exponentially rising penalty is attributed to locations that
cross their historical thresholds with greater frequency in
order to account for potential tipping points or cascading
effects.

Climate Projection Scenarios

It is common practice to create climate projections under different emission pathways.
Currently, there are different projections based on different assumptions and emission
models such as Representative Carbon Pathways (RCP) or Shared Socioeconomic Pathways
(SSPs). Climate Alpha gathers projection data from a variety of these models and presents 3
intuitive classifications of the future projections. These three scenarios are Optimistic,
Business as Usual, and Pessimistic. The following table describes each scenario.

Optimistic
(SSP1 RCP3.4)

The Optimistic scenario (SSP1 RCP3.4) represents a world with stable
economic development and carbon emissions peaking and
declining before 2040, with emissions constrained to stabilize lower
than ~650 ppm CO2 and temperatures between 2.0 to 2.4°C by 2100.

Business as
Usual
(SSP3 RCP4.5)

The Business as Usual (BAU) scenario (SSP3 RCP4.5) represents a
world with stable economic development and carbon emissions
peaking and declining by 2045, with emissions constrained to
stabilize at ~650 ppm CO2 and temperatures from 2.6 between 3.2°C
by 2100.

Pessimistic
(SSP5 RCP8.5)

The Pessimistic scenario (SSP5 RCP8.5) represents a fragmented
world with uneven economic development, higher population
growth, lower GDP growth, a lower rate of urbanization and steadily
rising global carbon emissions, with CO2 concentrations reaching
~1370 ppm by 2100 and global mean temperatures increasing
between 2.6 to 4.8°C relative to 1986–2005 levels.
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Vulnerability and Readiness Index Methodology
The vulnerability and the readiness indexes measure how exposed or how prepared a location
is to the physical risks, respectively. This information helps users assess the actual degree of
damage of physical risks on their property, factoring in the climate resilience of their
geography.

Vulnerability Index
The vulnerability index measures how exposed a place is to physical risks induced by climate
change. It comprises 6 different sub-scores, covering the demographic, economic, and
infrastructure vulnerabilities of a place.

Scores Description Score Composition

Population
Density

Densely populated areas means that
climate hazards would affect more
population.

1. Population per acre

Coastal
Population

Population near coastal areas has
increased exposure to coastal flooding.

1. % of the population near
coast

Age Structure
Elderly are more sensitive to sudden
strikes of climate hazards such as
heatwaves, heavy storms, and forest fires.

1. % population above 65
years old

Urban
Porosity

Urban areas with low porosity are more
susceptible to Urban Heat Island effect
and suffer higher surface runoff during
storms.

1. % built-up area
2. % road cover

Infrastructure

Areas with a higher number of older
buildings and ill-maintained
infrastructures are more sensitive to
climate hazards.

1. % buildings built before
2000
2. % bridges and roads in
poor condition

Poverty and
Inequality

Impoverished families are more sensitive
to the impact of climate hazards.

1. % population in poverty
2. % income spent on rent
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Readiness Index
The readiness index measures how prepared a place is to physical risks induced by climate
change. It comprises 6 different sub-scores, covering the demographic, economic,
infrastructure, and governance readiness of a place.

Scores Description Score Composition

Credit Score Credit score indicates the
economic stability of a county.

1. Median FICO score
2. Debt to income ratio

Healthcare Better healthcare resources
increase adaptive capacity.

1. Hospital bed per 1,000 population
2. % population with health
insurance

Crime and
Safety

Lower crime rate hints at more
income equality and stability in a
county.

1. Violent crimes per 100,000
residents

Education
A well-educated population is
more informed to make more
climate-friendly decisions.

1. % population with high school
education and above

Public
Spending

Higher spending on infrastructure
and public spaces increases
climate readiness.

1. Per capita infrastructure
spending
2. Per capita park spending

Clean Energy
Higher Clean Energy score signals
the progress of transition into a
more sustainable future.

1. Energy from renewable sources
2. Per capita clean energy
investment
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8. CLIMATE PRICE TM

Climate Alpha’s Climate Price ™ is defined as the deviation from the baseline forecasted
market value of a location, portfolio, or property when modeled under different climate
change scenarios.

The Climate Price ™ is  calculated as a percentage weight applied to the baseline forecast.
This coefficient is derived from the Resilience Index scores (risk, vulnerability, and readiness)
of each location, thus factoring in both exposure to risks as well as adaptation capacity. The
risk score carries a 50% weight in the coefficient while the vulnerability and readiness scores
are weighted at 25% each. (Both socio-economic variables and climate factors exhibit
extreme or tail-heavy distribution by which negatively impacted locations suffer greater
erosion of value versus the gains experienced by positively scored locations.)

Statistically, the coefficient is calculated from the Z-score of each location. The higher the
deviation from the national mean performance of each cluster (risk, vulnerability, readiness),
the more drastic the impact of climate risk is on asset values. The maximum and minimum
impacts are anchored to the estimated range of economic impact caused by climate change
from peer-reviewed journal papers8. Locations with similar climate risk profiles may have
different valuation outcomes due to their varying readiness scores. For example, locations
with higher readiness scores than surrounding areas may gain in value compared to their
neighbors.

The Climate Price ™ disambiguates correlation and causation factors. The first-order impact
of climate variables on asset values can be misleading (such as damage from a tropical
storm). We focus on second-order impacts of climate variables such as insurance premiums
and population movement that have a verifiable impact on asset values.

8 Papers reviewed include:

S. Hsiang, R. Kopp, A. Jina, J. Rising, M. Delgado, S. Mohan, D.J. Rasmussen, R. Muir-Wood, P.
Wilson, M. Oppenheimer, K. Larsen and T. House, Estimating economic damage from climate
change in the United States. Science, Vol. 356 Issue 6345, pp 1362-1369 (2017).
T. Carleton & S. Hsiang, (2016). Social and economic impacts of climate. Science.

T. Carleton, S. Hsiang, Social and economic impacts of climate, Science, Vol 353 Issue 6304
(2016).

S. Hsiang, R. Kopp, A. Jina, M. Delgado, J. Rising, S.. Mohan, R. Muir-Wood, D. J. Rasmussen, M.
Mastrandrea, P. Wilson, K. Larsen and T. House, American Climate Prospectus: Economic Risks
in the United States (2014).
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APPENDIX

Index-to-price Translation
Accurate translation of price indices to absolute dollar price is crucial for the baseline
forecaster and helps users understand asset values better. Multiple methods were
experimented with, and their results are recorded below.

Technique MAE($) RMSE($) MAPE(%) MSPE(%)

Absi / Absbase * 100 9301.47 16258.32 3.8 6.8

hpibase + Yearly ∆ =
hpibase+1

7661.38 19983.71 2.6 8.2

∆hpi2020-i/∆Abs2020-i 14131.79 201336.84 3.5 84.2

Abs2020:Absi/hpi2020:hpii 5738.62 10694.06 2.4 4.5

Linear Regression with 5
data points

5989.96 14263.21 2.4 6.0

Linear Regression with 6
data points

4617.41 11024.17 1.8 4.6

Linear Regression with 7
data points

3889.06 8874.97 1.5 3.7

Linear Regression with
8 data points

3653.10 8189.77 1.5 3.4

Table A1: Index-to-price translation metrics with different methods

From the table, two methods provide reliable translation. The first uses the ratio between the
increase of HPI and the increase in the absolute value of year against the year 2020. This
method can be used for places with very little data as only one year of absolute data needs to
be collected for accurate translation.

The second method is Linear Regression. As the number of available data points increases,
the error lowers significantly. Therefore, for places that have more than 6 years of absolute
value data, Linear Regression will be used.
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